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Abstract
The atomic force microscope is used increasingly to investigate the
mechanical properties of materials via sample displacement under an applied
force. However, both the extent of forces attainable and the accuracy of those
forces measurements are significantly limited by the optical lever
configuration that is commonly used to infer nanoscale deflection of the
cantilever. We present a robust and general approach to characterize and
compensate for the nonlinearity of the position-sensitive optical device via
data processing, requiring no modification of existing instrumentation. We
demonstrate that application of this approach reduced the maximum
systematic error on the gradient of a force–displacement response from 50%
to 5%, and doubled the calibrated force application range. Finally, we outline
an experimental protocol that optimizes the use of the quasi-linear range of
the most commonly available optical feedback configurations and also
accounts for the residual systematic error, allowing the user to benefit from
the full detection range of these indirect force sensors.

1. Introduction

The atomic force microscope (AFM) [1] has become an
important tool for investigating the mechanical properties
of materials at the nanoscale via the analysis of force–
displacement responses [2, 3]. In the most common
experimental approach (figure 1), the deflection of the
cantilever is measured using the optical lever technique [4]:
a laser beam is reflected by the bent cantilever into a position-
sensitive detector (PSD). The usual PSD is a split or quadrant
photodiode, which records the difference between the light
intensities received by the top section (A) and the bottom
section (B) and converts this signal to a voltage output VPD.
The signal VPD = A − B, usually normalized to the total
intensity A + B, is a function of the beam position. This
scheme is very sensitive to small changes in beam incident
angle, detecting cantilever deflections of 0.1 Å or less, and
measurement precision is usually limited by the thermal noise.

photodiode

F

Zp

laser

(VPD) mirror
(VPD)0

Zc

δ

Figure 1. AFM force application configuration. A vertical
displacement Zp is applied to the cantilever base, causing it to deflect
by Zc and to apply a force F to the sample, which deforms by a
depth δ. The deflection Zc is measured indirectly through the
photodiode, giving the deflection as a voltage signal VPD. A mirror is
used to adjust the resting signal V 0

PD when Zc = 0.

Unfortunately, the linear range of this laser-PSD
configuration that is typically utilized in commercial AFMs is
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limited, reducing the useful range of the PSD signal1. This
limits the range of picoNewton- to microNewton scale forces
accessible to the experimentalist, especially when compliant
cantilevers (i.e. a spring constant less than 0.1 N m−1) are
used. Most of this nonlinearity is due to the shape of the
laser spot [5], with small contributions (systematic error) from
the geometry of the optical path [6]. While commercial AFM
instrumentation is usually tuned to maximize the linear range,
further extension of this range can be obtained by replacing
the split photodiode with a linear PSD [7, 8] or an array
detector [9].

Here, we demonstrate a method that determines and
compensates for the nonlinearity of an existing PSD, and
provide a protocol that allows the use of the full detection range
of existing instrumentation based on a quadrant photodiode.
This approach obviates the need for hardware replacements
such as linear PSDs in order to take advantage of the full
nominal range of forces that can be applied and measured
accurately. In the following sections, we briefly review the
usual calibration procedure and present a novel correction for
this nonlinearity. Finally, we propose a protocol for the optimal
use of an AFM for force–displacement acquisition.

2. Force–displacement measurement and traditional
calibration

A simplified representation of the AFM force–displacement
acquisition is shown in figure 1. The cantilever base
displacement Zp is controlled by the Z -piezoactuator, which
displaces the probe toward the sample surface. When contact
is made and the Z -piezo continues to travel toward the sample
surface, the cantilever’s free end deflects by Zc. This bending
mode of the cantilever deflects a laser beam focused near the
free end, causing a differential voltage signal (termed the raw
deflection VPD) between the upper and lower segments of the
quadrant photodiode into which this reflected laser beam is
directed. This deflection of the cantilever also exerts a force
F on the sample surface, calculated as:

F = kc Zc (1)

where kc is the cantilever spring constant. This force displaces
the sample surface by a distance δ. When the probe tip is in
contact with the sample, this deformation must be equal to
the difference between the cantilever base displacement after
contact Zp − Z0

p and the cantilever free-end deflection Zc:

δ = Zp − Z0
p − Zc (2)

where Z0
p is the base displacement at the contact point.

In such a force–displacement experiment, the only
quantities that are measured directly are the vertical
displacement of the Z -piezoactuator Zp, acquired for example
via a calibrated linear variable differential transformer (LVDT)
in tandem, and the deflection angle of the cantilever probe,

1 For the sensor analysed in section 4, the sensitivity is within 5% of the
minimum value for a photodiode signal range of 7.5 V, which represents
38% of the total range of 20 V. For the specific cantilever employed, the
measurements are reliable up to a load of 14.5 μN in ideal conditions, rather
than the nominal maximum of 38.8 μN.

acquired indirectly as the differential voltage VPD in the
photodiode.

In order to obtain a force–displacement (F , δ) response
from the experimentally measured quantities, an accurate
calibration of the relationship between the cantilever free-end
deflection Zc and the photodiode voltage VPD is required.

Assuming that this relationship is linear, we can define
a sensitivity SPD as the slope of the VPD versus Zc curve.
Thus, the voltage output is proportional to the cantilever
deflection, and the signal VPD (in (V)) corresponds directly to
the cantilever deflection Zc:

Zc = (VPD − V 0
PD)S−1

PD (3)

where the constant S−1
PD is the inverse optical lever sensitivity

(in (m V−1)) and V 0
PD is the resting signal, or the photodiode

voltage when the cantilever is not in contact with the sample
surface. V 0

PD can be adjusted manually to any desired value
within the sensor range (typically to 0 V) by adjusting the
mirror that deflects the laser beam toward the photodiode (see
figure 1). From (1) to (3), it is clear that one can trivially
obtain the force–displacement response (F = kc Zc, δ) from
the experimental quantities Zp and VPD, if both S−1

PD and kc are
known.

The inverse sensitivity S−1
PD is obtained by performing

an uncalibrated force–displacement test where the sample
surface is much stiffer than the cantilever, such that the sample
deflection δ is negligible and the cantilever free-end upward
deflection Zc is equal in magnitude to the Z -piezo downward
displacement Zp from the contact point Z0

p:

δ ≈ 0 −→ Zc = Zp − Z0
p . (4)

Comparing (3) and (4), we obtain the inverse sensitivity
as the slope of the calibration curve, shown in figure 2 as the
expected linear curve:

S−1
PD = Zp − Z0

p

VPD − V 0
PD

= �Zp

�VPD
. (5)

3. Nonlinear calibration of the sensitivity

Actual force–displacement responses acquired to calibrate the
inverse sensitivity S−1

PD deviate from the ideal case described
above, as shown in figure 2. Notably, the photodiode voltage
VPD versus Z -piezo displacement Zp response, and thus the
cantilever deflection Zc versus VPD relation, is nonlinear. The
assumption that the inverse sensitivity S−1

PD is a constant leads
to increasing errors in the calculation of Zc if VPD is outside
the linear range. In fact, figure 2 indicates up to 50% variation
in S−1

PD as a function of the range and initial value of the
photodiode voltage for the cantilever considered (nominal
spring constant kc = 42 N m−1 [10]).

Among the several factors that introduce nonlinearities,
the most important is the shape and intensity profile of the
laser spot [3], as illustrated by figure 3. The sensitivity is
proportional to the amount of light over the split line. If the
spot is at the centre of the split photodiode, or nearly centred,
the response is almost linear. As the spot moves away from
the centre, nonlinearity becomes more pronounced due to the
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Figure 2. (a) Force calibration curve (VPD versus Z ) showing the expected linear response (— · —), the observed behaviour (solid line) and
the proposed fit (– – –, offset for clarity). The rest signal is V 0

PD = −9.5 V, as seen in the approach region. (b) The same curves expressed as
S−1

PD versus VPD, obtained by calculating the slope dZp/dVPD of the corresponding response in (a). The experimental response was smoothed
before calculating the slope S−1

PD using a finite difference formula. V ∗
PD = −4.8 V is the minimum of this curve, and variation in S−1

PD is
minimized about this photodiode voltage.

Zc
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Figure 3. Effect of the laser spot shape on the response of a split
photodiode. The area of the spot over the split line (hatched on the
left figure) is proportional to the slope S−1

PD of the optical sensitivity
curve (VPD versus Zc, right). If the spot is centred (��) or nearly
centred (♦), the response is almost linear. As the spot moves away
from the centre (◦), nonlinearity becomes more pronounced. The
inflection point V ∗

PD (��) and the resting signal V 0
PD are marked in the

graph.

faster change in the cross section and to the exponential decay
of the light intensity.

If the spot shape is symmetric, the nonlinear response will
be approximated well by a third-degree polynomial on VPD,
centred at the inflection point V ∗

PD (see figure 3). The error is
of the order O(�5), where � = VPD − V ∗

PD. If the shape is not
symmetric, the error will be of the order O(�4). We chose to
fit a third-order polynomial to the (Zc, VPD) response of such
loading calibration experiments:

Zc = Zp − Z0
p = a3(VPD − V ∗

PD)3 + a1(VPD − V ∗
PD) + a0 (6)

where ai are fitting parameters. In our experience, this
produces an excellent fit to the experimental response of
cantilever deflection against a rigid surface, which is not
improved by additional terms ai>3.

If required, the inverse sensitivity can be obtained as the
derivative of this polynomial fit, a parabolic function of VPD:

S−1
PD = dZp

dVPD
= 3a3(VPD − V ∗

PD)2 + a1. (7)

Thus, the inverse sensitivity S−1
PD is represented as a continuous

function of the photodiode voltage VPD, rather than as a single
value. If the photodiode response were linear with VPD, this
function would be a horizontal line and there would be a single,
constant S−1

PD independent of VPD.

4. Experimental verification

The experiments were carried out using a 3D-Molecular
Force Probe (MFP-3D, from Asylum Research, Santa Barbara,
CA). We used a silicon cantilever (Olympus AC160 [10]) of
nominal spring constant kc = 42 N m−1. We performed
several calibration experiments (deflection against a flat silicon
surface), each time manually adjusting the resting photodiode
voltage V 0

PD to a series of values from −9.5 to 9.0 V in
increments of 0.5 V. This calibration series was obtained in
order to distinguish the effect of the inflection point V ∗

PD,
hypothesized to be a property solely of the photodiode, from
other nonlinearities in the system (e.g. in the value of
the Z -piezo displacement Zp reported by the displacement
transducer).

Figure 4 shows the resulting variation of the inverse
sensitivity S−1

PD as a function of the photodiode voltage VPD

for a subset of the curves acquired over a range of resting
voltages V 0

PD. This figure illustrates that the S−1
PD depends

strongly on the absolute voltage VPD. We note that the
value of the inflection point V ∗

PD varies depending on the
resting voltage V 0

PD, suggesting that the quantities are not
totally independent. However, V ∗

PD = −4.4 V represents the
approximate photodiode voltage at which the minimum S−1

PD is
obtained for this photodiode and this cantilever.

In order to further isolate the effect of the photodiode
signal from any nonlinearities induced by the actual cantilever
bending deflection upon contact with the rigid surface
(Zc, represented by VPD − V 0

PD), we evaluated the inverse
sensitivity S−1

PD exactly at the contact point of the acquired
loading response (i.e. in the absence of cantilever bending).
Specifically, to each acquired VPD versus Zp response,
equation (6) was fitted to determine the fitting constants ai and
the inflection point V ∗

PD, and then equation (7) was evaluated
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Figure 4. Inverse sensitivity S−1
PD calculated via (7) as a function of

the photodiode voltage VPD. The resting point for each acquired
response (V 0

PD) is marked with an asterisk. This demonstrates that
most (but not all) of the nonlinearity in S−1

PD is due to the photodiode
nonlinearity. The remaining systematic error is indicated by the
spread of values at any given VPD.
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Figure 5. Inverse sensitivity S−1
PD (V 0

PD) evaluated at the contact point,
as a function of the deflection VPD = V 0

PD, and the corresponding
global fit. Each experimental point represents a deflection response
acquired at a different resting voltage V 0

PD; asterisks in figure 4 are in
fact a subset of the larger set of experiments shown in this figure.

for the resting point VPD = V 0
PD. Fitting a parabola to these

points, we obtained an overall nonlinear behaviour that can be
attributed solely to the nonlinearity of the photodiode output,
as shown in figure 5.

We must note that an additional factor must be considered
near the contact point. Since the cantilevered probe tip is
sharp (with a nominal radius of R = 7 nm [10]), there is a
small region of the force–displacement where the sample is
indented and the approximation that sample deflection δ ≈ 0
is not valid. Nevertheless, fitting to the rest of the curve
and extrapolating the gradient of this fit to VPD = V 0

PD gives
the correct slope in the absence of physical indentation of
the sample surface, whereas using the experimental slope at
VPD = V 0

PD would introduce a significant error. This effect can
be seen in figure 2(b), for VPD < −8 V.

Using this global parabolic function S−1
PD(VPD), we

recalculated the cantilever deflection Zc from all acquired
loading responses. That is, constants a3, a1 and V ∗

PD were
determined by fitting this parabolic function against (7),
then Zc was calculated from (6) (rather than from (3),
which assumes a single value of the S−1

PD ). This approach
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Figure 6. Apparent inverse sensitivity S−1
PD , after correcting for the

nonlinearity using the fit shown in figure 5 and smoothing to reduce
the experimental noise. Data correspond to the uncorrected lines
displayed in figure 4. The residual or systematic error is related to the
physical deflection (VPD − V 0

PD), rather than the absolute position VPD

of the laser spot on the photodiode.

compensated for all of the nonlinearity in the photodiode
output, and the remaining systematic error resulted in a
variation of about 5% in the slope of the calibration curve
(Zp versus Zc), versus up to 50% before the compensation.
This residual error is plotted in figure 6, as a function of the
physical deflection signal (VPD − V 0

PD). For easier comparison
with the preceding figures, the slope dZp/dZc was multiplied
by the inverse sensitivity S−1

PD (V ∗
PD), giving an apparent inverse

sensitivity. Upon correction of the PSD nonlinearity in this
manner, the maximum calibrated force range increased from
14.5 μN (−8.15 to +0.65 V) to 38.8 μN (−10 to 10 V).

5. Proposed calibration protocol

Based on this study, we propose a calibration protocol that
(a) identifies the linear range of the PSD and (b) corrects for
the nonlinearity when processing the data. Working within
the linear range identified in (a) allows the user to employ the
linear assumption and neglect the nonlinear processing if the
results are considered adequate.

Protocol:

(i) Set the resting photodiode signal V 0
PD near the lower

range (e.g. −9.5 V if the range is −10 to 10 V) by
adjusting the mirror position.

(ii) Obtain an uncalibrated force–displacement response on
a rigid substrate (calibration experiment) that approaches
the upper range of the PSD output (e.g. to 9.5 V, to avoid
saturation of the photodiode).

(iii) Fit a third-order polynomial to the cantilever deflection
Zc(VPD) response (6), and obtain the inflection point
V ∗

PD.
(iv) Calculate the inverse sensitivity S−1

PD(V ∗
PD) of the linear

range using (7).
(v) If the calibration of the cantilever spring constant kc

depends on the optical sensitivity (for example, if the
Hutter and Bechhoefer method [11–13] is used), set the
resting signal to V 0

PD = V ∗
PD and obtain the cantilever

spring constant at this point.
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(vi) Calculate an optimal work range (minimum to maximum
VPD, centred in V ∗

PD), according to the maximum force
desired and the nominal stiffness of the cantilever.
For example, if the goal is to apply 500 nN, S−1

PD is
50 nm V−1 and kc = 1 N m−1, the VPD range should
be:

500 nN

1 N m−1
× 1

50 nm V−1
= 10 V

and, taking V ∗
PD = −4.5 V, the optimal working range is

−9.5 V to +0.5 V.

(vii) Optionally recalibrate (steps (i) to (iv)) within the
working range, to compensate for the systematic error
shown in figure 6.

(viii) Acquire the experimental VPD versus Zp response.

(ix) Calculate the cantilever deflection, by using either:

(a) the conventional formula Zc = (VPD − V 0
PD)S−1

PD ,
where S−1

PD was obtained in step (iv); or

(b) the nonlinear calibration curve Zc(VPD) obtained in
step (iii) or (vii).

(x) Calculate the force using (1) and the sample displace-
ment using (2).

6. Conclusions

It is well-known that the split photodiode position-sensitive
device is intrinsically nonlinear except for very small
deflections. While commercial AFM instrumentation is
usually optimized such that the linear region is well centred and
covers most of the sensor range, such nonlinearity still poses
problems and limitations for applications where large forces
(nanoNewton to microNewton scale) and/or very compliant
(kc < 0.1 N m−1) cantilevers are employed.

The nonlinear calibration procedure presented here
allows AFM users to benefit from the full range of their
photodiode sensors without hardware modifications such as
truly linear PSDs and photodiode arrays. It also improves
the determination of the cantilever spring constant kc for
calibration methods that depend inherently on the optical lever
sensitivity SPD. This is the case for the Hutter and Bechhoefer
method [11–13], which requires an accurate estimation of the
thermal noise amplitude.

An analogous procedure can be employed to calibrate the
lateral sensitivity of the PSD in conjunction with a lateral
calibration method (e.g. [14, 15]). We expect that the strongly
nonlinear behavior of the lateral sensor characterized by
Cannara et al [15] could be corrected using the procedure
outlined herein.
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Appendix. Implementation

We present two subroutines (in the MATLAB language) that
may be implemented in the AFM data processing software to
automate the protocol proposed herein.

Steps (iii) and (iv) of the protocol are performed by
running the subroutine calibrate on the data acquired in step
(ii). The input parameters are the photodiode voltage signal
VPD (Vpd) and the Z -piezo displacement Zp (Zp). The routine
returns V ∗

PD (Vpds), a1 = S−1
PD(V ∗

PD) (a1) and a3 (a3).

function [Vpds, a1, a3] = calibrate(Vpd, Zp)
% Fit Zp = b3*Vpd^3 + b2*Vpd^2 + b1*Vpd + b0
P = polyfit(Vpd, Zp, 3);
b3 = P(1); b2 = P(2); b1 = P(3); b0 = P(4);
% Calculate Vpds, the inflection point
Vpds = -b2/(3*b3);
% Shift the center of the polynomial to Vpds
a3 = b3;
a1 = b1 + 2*b2*Vpds + 3*b3*Vpds^2;

Step (ix) of the protocol is performed by running
apply calibration on the data acquired in step (viii). The
input parameters are the voltage signal VPD (Vpd), the resting
signal V 0

PD (Vpd0) and the calibration parameters Vpds, a1
and a3, calculated by calibrate. If the conventional (linear)
analysis is required, just provide zero for both a3 and Vpds.

function Zc = apply_calibration
(Vpd, Vpd0, Vpds, a1, a3)

% Calculate a0 such that Zc(Vpd0) = 0
a0 = -a3*(Vpd0 - Vpds)^3 - a1*(Vpd0 - Vpds);
% Apply the calibration
Zc = a3*(Vpd - Vpds).^3 + a1*(Vpd - Vpds) + a0;

References

[1] Binnig G, Quate C F and Gerber C 1986 Atomic force
microscope Phys. Rev. Lett. 56 930–3

[2] Cappella B and Dietler G 1999 Force–distance curves by
atomic force microscopy Surf. Sci. Rep. 34 1–104

[3] Butt H J, Cappella B and Kappl M 2005 Force measurements
with the atomic force microscope: technique, interpretation
and applications Surf. Sci. Rep. 59 1–152

[4] Meyer G 1988 Novel optical approach to atomic force
microscopy Appl. Phys. Lett. 53 2400–2

[5] Schaffer T E and Hansma P K 1998 Characterization and
optimization of the detection sensitivity of an atomic force
microscope for small cantilevers J. Appl. Phys. 84 4661–6

[6] Beaulieu L Y, Godin M, Laroche O, Tabard-Cossa V and
Grutter P 2006 Calibrating laser beam deflection systems for
use in atomic force microscopes and cantilever sensors Appl.
Phys. Lett. 88 083108

[7] Butt H J 1994 A technique for measuring the force between a
colloidal particle in water and a bubble J. Colloid Interface
Sci. 166 109–17

[8] Pierce M, Stuart J, Pungor A, Dryden P and Hlady V 1994
Adhesion force measurements using an atomic-force
microscope upgraded with a linear position-sensitive
detector Langmuir 10 3217–21

[9] Schaffer T E 2002 Force spectroscopy with a large dynamic
range using small cantilevers and an array detector J. Appl.
Phys. 91 4739–46

[10] Olympus Corporation 2006 Micro Cantilever OMCL Series
Catalog Tokyo (URL http://www.olympus.co.jp/probe/)

[11] Hutter J L and Bechhoefer J 1993 Calibration of atomic-force
microscope tips Rev. Sci. Instrum. 64 1868–73

5529

http://dx.doi.org/10.1103/PhysRevLett.56.930
http://dx.doi.org/10.1016/S0167-5729(99)00003-5
http://dx.doi.org/10.1016/j.surfrep.2005.08.003
http://dx.doi.org/10.1063/1.100425
http://dx.doi.org/10.1063/1.368707
http://dx.doi.org/10.1063/1.2177542
http://dx.doi.org/10.1006/jcis.1994.1277
http://dx.doi.org/10.1021/la00021a053
http://dx.doi.org/10.1063/1.1450258
http://www.olympus.co.jp/probe/
http://www.olympus.co.jp/probe/
http://www.olympus.co.jp/probe/
http://www.olympus.co.jp/probe/
http://www.olympus.co.jp/probe/
http://www.olympus.co.jp/probe/
http://www.olympus.co.jp/probe/
http://www.olympus.co.jp/probe/
http://www.olympus.co.jp/probe/
http://www.olympus.co.jp/probe/
http://www.olympus.co.jp/probe/
http://www.olympus.co.jp/probe/
http://www.olympus.co.jp/probe/
http://www.olympus.co.jp/probe/
http://www.olympus.co.jp/probe/
http://www.olympus.co.jp/probe/
http://www.olympus.co.jp/probe/
http://www.olympus.co.jp/probe/
http://www.olympus.co.jp/probe/
http://www.olympus.co.jp/probe/
http://www.olympus.co.jp/probe/
http://www.olympus.co.jp/probe/
http://www.olympus.co.jp/probe/
http://www.olympus.co.jp/probe/
http://www.olympus.co.jp/probe/
http://www.olympus.co.jp/probe/
http://www.olympus.co.jp/probe/
http://www.olympus.co.jp/probe/
http://www.olympus.co.jp/probe/
http://www.olympus.co.jp/probe/
http://www.olympus.co.jp/probe/
http://dx.doi.org/10.1063/1.1143970


E C C M Silva and K J Van Vliet

[12] Butt H J and Jaschke M 1995 Calculation of thermal noise in
atomic-force microscopy Nanotechnology 6 1–7

[13] Burnham N A, Chen X, Hodges C S, Matei G A,
Thoreson E J, Roberts C J, Davies M C and
Tendler S J B 2003 Comparison of calibration methods
for atomic-force microscopy cantilevers Nanotechnology
14 1–6

[14] Asay D B and Kim S H 2006 Direct force balance method for
atomic force microscopy lateral force calibration Rev. Sci.
Instrum. 77 043903

[15] Cannara R J, Eglin M and Carpick R W 2006 Lateral force
calibration in atomic force microscopy: a new lateral force
calibration method and general guidelines for optimization
Rev. Sci. Instrum. 77 053701

5530

http://dx.doi.org/10.1088/0957-4484/6/1/001
http://dx.doi.org/10.1088/0957-4484/14/1/301
http://dx.doi.org/10.1063/1.2190210
http://dx.doi.org/10.1063/1.2198768

	1. Introduction
	2. Force--displacement measurement and traditional calibration
	3. Nonlinear calibration of the sensitivity
	4. Experimental verification
	5. Proposed calibration protocol
	6. Conclusions
	Acknowledgments
	Appendix. Implementation
	References

